
High Speed Parsing
Massive XML in Ruby
Be faster than Python sample code!

Dogrun Inc. Tetsuya Hirota
RubyWorld Conference 2023



Introduction

Name: Tetsuya Hirota

Job Title: Chief Technology Officer (CTO) at Dogrun Inc.

Location: Shizuoka-city Japan

My Job:

• Bioinformatics database development.

• Developing applications using deep learning for our clients
(which has been quite interesting :-)

Volunteer:
Programming courses mainly for children in Makinohara-city.



Dogrun's Expertise

Expertise:

Following in the field of life sciences. 

• Database construction

• Development of robust data retrieval systems

• Creating powerful data visualization tools

Today's Focus:

High-speed parsing massive XML
as part of bioinformatics database development



BioProject

Public database for Bio science

• Such as genomes and RNA data are registered.

• Along with related metadata such as paper information, 
experimental conditions, and samples.

BioProject – a part of public database

• Metadata about sequence analysis projects such as genomes and 
RNA.

• Single 2GB XML file containing 700,000 records.
(It’s getting bigger day by day.)

Problems

• Limited search patterns provided by the database.

• Complex searches on XML takes a lot of time.



Parsing XML Normally

Parsing BioProject XML and, output the extracted JSONL.

• ReXML

• Frozen somewhere and no response...

• Nokogiri

• It took 35 minutes and used over 10GB of memory.

• It is considered slow because it loads all objects into memory 
and searches for XPaths.

• Python sample (using iterparse())

• It took 8+ minutes.

• Each element in the first layer is lazily loaded.



Make something like iterparse() in Ruby

• Nothing in Ruby like iterparse() → I make it!

• Design (Consists of 3 parts)

• Split by 1st layer element lazily

Each time a 1st layer element is read, that element is passed to 
the next process.

• Parse splitted XML

Normal parsing for splitted XML.

• Output extracted JSONL

Search XPath from splitted XML objects and output extracted 
JSONL

• Named “enumparse”



Making enumparse Using SAX

• String operations

• Extract the range from the start tag to the end tag of an 
element using string operations. ⇒ Slow

• Using SAX

• SAX?

SAX (The Simple API for XML). Unlike DOM, SAX reads a 
document sequentially from the beginning and transmits 
information to the application via events.

• SAX included in Nokogiri

• Extract a 1st layer element using SAX. ⇒ Practical speed 
(13 min.)



Ox seems Fast

Couldn't be faster the splitted XML parsing part?

• Ox

• Found a library that can parse faster.

• https://github.com/ohler55/ox

• Change to parsing part to Ox. ⇒ Fast (about 8 min.)
(enumparse + Ox)

• Now it can be in the same processing time as Python code.
Completed. That's not it?

http://www.ohler.com/dev/xml_with_ruby/xml_with_ruby.html

https://github.com/ohler55/ox
http://www.ohler.com/dev/xml_with_ruby/xml_with_ruby.html


enumparse + Nokogiri + Ractor

• Ruby users are got used to Nokogiri, I think.
And I want to enumparse + Nokogiri to be faster.

• There are Ractor in Ruby.

• Parallelize reading, parsing, and writing for faster 
processing

• Parsing part Nokogiri can’t parallelize by Ractor.

• Parallelized only writing, but it to be faster. (less than 
8min)

• If you are using Nokogiri, please use this.



enumparse + OX + Ractor

• Focusing on speed, I tried a similar configuration on Ox.

• Using Ractor

• Parallelize reading, parsing, and writing

• Ox can parallelize by Ractor

• Very fast (about 6min)

• Naturally, CPU usage will increase.



Tried change to Ox’s SAX, but ...

• Parsing by Ox is very fast.

• It may be fast reading by Ox’s SAX?

• Unfortunately, it was slow

• Parallelize reading, parsing, and writing

• Slow... (8min over)



Fastest is enumparse (using libxml’s SAX) + OX 
+ Ractor

• Nokogiri may not be installed due to gem dependencies. 
Therefore, I created enumparse using libxml's SAX version.

• It can parallelize reading, parsing, and writing

• It’s fastest! (5min34sec)

• If you are not using Nokogiri and focusing on speed, please 
use this.



Sharing this result enumparse

I released nokogiri-enumparse, and will release 
libxml_enumparse.

• nokogiri-enumparse

• GitHub: https://github.com/dogrun-inc/nokogiri-enumparse

• RubyGems: https://rubygems.org/gems/nokogiri-enumparse

• libxml_enumparse

• In preparation.

https://github.com/dogrun-inc/nokogiri-enumparse
https://rubygems.org/gems/nokogiri-enumparse


Thank You, and More Details

If you wish to know more details, I will do the presentation of 
this contents and details in RubyConf Taiwan 2023.


	スライド 1: High Speed Parsing Massive XML in Ruby Be faster than Python sample code!
	スライド 2: Introduction
	スライド 3: Dogrun's Expertise
	スライド 4: BioProject
	スライド 5: Parsing XML Normally
	スライド 6: Make something like iterparse() in Ruby
	スライド 7: Making enumparse Using SAX
	スライド 8: Ox seems Fast
	スライド 9: enumparse + Nokogiri + Ractor
	スライド 10: enumparse + OX + Ractor
	スライド 11: Tried change to Ox’s SAX, but ...
	スライド 12: Fastest is enumparse (using libxml’s SAX) + OX + Ractor
	スライド 13: Sharing this result enumparse
	スライド 14: Thank You, and More Details

