
RBS Tutorial
RubyWorld Conference 2023

9th, Nov. 2023

pp self
● Masataka Pocke Kuwabara
● Work for Money Forward, Inc.

○ クラウド会計Plus
○ A maintainer of RBS

● Live in Okayama

Matsue and me

Goal
● You can start developing applications with RBS

○ without confusion.

● You can find references to learn RBS.

Agenda
● Describe `.rbs` files

○ The difference from .rb files

● RBS Syntax Overview
● How to start RBS
● Libraries
● References

This talk is based on the premise that it uses RBS and Steep.

What is .rbs file

What is .rbs file
It defines static types for `.rb` file.

● It is separated from `.rb` file.
● `.rbs` is not a Ruby file. RBS has different syntax from Ruby.

Separated from .rb file
● Basically, `.rb` file does not contain type information.

○ All type definitions have to be written in RBS files.

● It is similar to (.c and .h) or (.js and .d.ts).
● RBS environment is created only from .rbs file.

○ If .rb file contains a class definition, RBS does not recognize the class without definition
in .rbs file.

In the future (nothing determined)
● RBS may support writing RBS in .rb files

○ For example, as a comment (It is just an example!)
class C
 # @rbs: (Integer) -> String
 def f(int) = int.to_s
end

● RBS may relax unknown classes/modules/methods
○ For example, RBS can generate RBS definition from .rb files on runtime

RBS Syntax Overview

RBS Syntax
I'll describe RBS syntax overview.

It is similar to Ruby syntax, but it is different.

Classes / Modules
Ruby

module M
end

class C
 X = 42
 include M
end

C2 = C

RBS

module M
end

class C
 X: Integer
 include M
end

class C2 = C

Method Definitions
Ruby

class C
 def f1 = 42
 private def f2(int) = int.to_s

 private

 def f3(&block) = (block.call; 42)
 def f4(x:) = x + 42

 attr_reader :x
end

RBS

class C
 def f1: () -> Integer
 private def f2: (Integer int) ->
String

 private

 def f3: () { () -> void } ->
Integer
 def f4: (x: Integer) -> Integer

 attr_reader x: Integer
end

Interfaces
Ruby

class IO
 def read(...)= ...
end

class StringIO
 def read(...)= ...
end

def read_from_io(io) = io.read

RBS

interface _Reader
 def read: (
 ?int? length,
 ?string outbuf
) -> String?
end

def read_from_io: (_Reader io) ->
String?

Other syntaxes
● Type Alias
● Type Parameter
● variables

○ (instance | class | class instance | global) variables

● `use` directive
● …and more!

See the following documentation for more information.
https://github.com/ruby/rbs/blob/master/docs/syntax.md

https://github.com/ruby/rbs/blob/master/docs/syntax.md

How to start RBS

How to start RBS
I'll describe a minimal example to start developing an app
with RBS / Steep and VS Code

Editor supports
● Many editors support RBS / Steep
● Technically, Steep works on editors supporting LSP

See the full list of editors supporting RBS
https://github.com/ruby/rbs/blob/master/docs/tools.md

https://github.com/ruby/rbs/blob/master/docs/tools.md

VS Code for RBS
I recommend using VS Code because

● VS Code is well-integrated to LSP
● It has officially developed plugins to integrate RBS

○ https://marketplace.visualstudio.com/items?itemName=soutaro.rbs-syntax
○ https://marketplace.visualstudio.com/items?itemName=soutaro.steep-vscode

Other editors also support RBS, you can use your favorite editor💕

https://marketplace.visualstudio.com/items?itemName=soutaro.rbs-syntax
https://marketplace.visualstudio.com/items?itemName=soutaro.steep-vscode

Prepare gems
Add Steep gem to your Gemfile

gem "steep", require: false

And run `bundle install`

Note that `gem "rbs"` is not required because Steep depends on RBS gem.

Minimum configuration of Steep
Steepfile

target :lib do
 signature "sig" # Specify where .rbs files are in
 check "lib" # Specify where .rb files are in
 check "app" # For Rails app
end

For more information, see `Steepfile` generated by
`steep init`.

Directory structure
● You should put RBS files under `sig/` directory

○ In gem package development, RBS files under the directory are exposed.

● No restriction of directory structure under `sig/`
○ But I recommend using the same directory structure as the `.rb` files.
○ In a Rails app: app/models/user.rb : sig/models/user.rbs
○ In a gem: lib/foo/bar.rb : sig/foo/bar.rbs

Tips: bin/steep
● Steep VS Code plugin supports `bin/steep` executable file.
● If `bin/steep` is available, the plugin uses it instead of `bundle exec

steep`
● If you need to configure `steep` command, you can use this file.

For larger applications
● You can use RBS Rails gem for a Rails application

○ https://github.com/pocke/rbs_rails

● You can use RBS generator, such as `rbs prototype`, to generate RBS
of existing Ruby code.

● For more information, check out my talk at RubyKaigi 2023
○ https://rubykaigi.org/2023/presentations/p_ck_.html#day3
○ This talk has demonstration, describing tools such as `rbs subtract`, for large app.

https://github.com/pocke/rbs_rails
https://rubykaigi.org/2023/presentations/p_ck_.html#day3

Libraries

Kinds of Libraries
● Core Library

○ It is installed by default and loaded by default (no require necessary)
○ Example: Array, String, etc…

● Standard Library
○ It is installed by default, but you need require to load it.
○ It includes default gems.
○ Example: pathname, ripper, etc…

● Gem
○ Other gems, including bundled gems.
○ Example: activerecord, nokogiri, etc…

See https://stdgems.org/ for the definition of (default / bundled) gems.

https://stdgems.org/

Core Library (Array, String, etc…)
RBS provides core libraries types out of the box

● In Ruby, we do not need require to use a core library
● Then, in RBS, we do not need to do anything to use a core library

Standard Library (pathname, ripper, etc…)
RBS gem contains their signatures

● You do not install anything except rbs gem
● But you need to specify the gem explicitly to load it

○ You can use `rbs collection` for this purpose

Gem
RBS can load third party gems RBS files from

● `sig/` directory in gem package
● GitHub repository, ruby/gem_rbs_collection

Library management: rbs collection
`rbs collection` manages RBSs of gems

● `rbs collection install` installs RBS files depended by your
application
○ It resolves the dependency from `Gemfile.lock`.

Check my previous talk in RubyKaigi 2021 Takeout for more details

https://rubykaigi.org/2021-takeout/presentations/p_ck_.html

https://rubykaigi.org/2021-takeout/presentations/p_ck_.html

References

Syntax
● Official document:

https://github.com/ruby/rbs/blob/master/docs/syntax.md
● My Blog articles:

○ https://pocke.hatenablog.com/entry/2021/01/02/175940 (2y ago)
○ https://moneyforward-dev.jp/entry/2023/10/13/rbs-new-syntaxes (only new syntaxes)

● For developers:
○ https://github.com/ruby/rbs/blob/master/ext/rbs_extension/parser.c

https://github.com/ruby/rbs/blob/master/docs/syntax.md
https://pocke.hatenablog.com/entry/2021/01/02/175940
https://moneyforward-dev.jp/entry/2023/10/13/rbs-new-syntaxes
https://github.com/ruby/rbs/blob/master/ext/rbs_extension/parser.c

Official documents
See docs/ directory https://github.com/ruby/rbs/tree/master/docs

● I recommend the following document for beginners
○ https://github.com/ruby/rbs/blob/master/docs/rbs_by_example.md

● You can find editor integrations from this document
○ https://github.com/ruby/rbs/blob/master/docs/tools.md

https://github.com/ruby/rbs/tree/master/docs
https://github.com/ruby/rbs/blob/master/docs/rbs_by_example.md
https://github.com/ruby/rbs/blob/master/docs/tools.md

Existing RBSs
You can find `.rbs` files from the following places

● Core Libraries: https://github.com/ruby/rbs/tree/master/core
● Standard Libraries: https://github.com/ruby/rbs/tree/master/stdlib
● Gems: https://github.com/ruby/gem_rbs_collection

https://github.com/ruby/rbs/tree/master/core
https://github.com/ruby/rbs/tree/master/stdlib
https://github.com/ruby/gem_rbs_collection

My Talks
● The newsletter of RBS (RubyKaigi Takeout 2021)

https://speakerdeck.com/pocke/the-newsletter-of-rbs-updates
○ It mainly describes `rbs collection`.

● Let's write RBS! (RubyKaigi 2023)
https://speakerdeck.com/pocke/lets-write-rbs
○ It mainly describes `rbs subtract`.

https://speakerdeck.com/pocke/the-newsletter-of-rbs-updates
https://speakerdeck.com/pocke/lets-write-rbs

Thanks for your
listening!

